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Abstract: This paper presents a method for modelling the permeability of fluid at the interface
formed between flat parallel plates and the sharp-edged ridges of a metal gasket. This work was
divided into three stages. In the first stage, numerical calculations simulating the deformation (com-
pression of the gasket) were performed. The calculations were carried out using thermomechanical
static analysis with commercial software. The purpose of these calculations was to determine the
contact area of the gasket ridges with the plates, the deformation of the gasket ridges, and the reac-
tion force resulting from the degree of compression of the gasket. In the second part of this work,
analytical calculations were performed to estimate the tightness level. The analytical model pro-
posed in this paper was based on Darcy’s equation, simulating fluid flow through a ring-shaped
porous layer. The analytical model also took into account the shape of the roughness profile of the
sealed surfaces. A mathematical Ausloos-Berman function based on fractal theory was used to rep-
resent it. In the last part of this work, experimental tests were carried out to determine the actual
fluid permeability and thus verify the numerical and analytical calculations.

Keywords: metal gasket; fluid permeability; contact pressure; fractal method; finite element method

1. Introduction

Bolted joints are one of the most commonly used solutions for connecting flanges in
piping systems [1-4]. This is particularly the case in the petrochemical, oil and gas, and
chemical industries. The proper preparation of such joints can determine the tightness of
piping systems. Meanwhile, the modelling of permeability at the interface of two materi-
als (for example, a pair of pipe flanges) remains a topical issue, attracting the attention of
a wide range of scientists and engineers involved in sealing the engineering of machine
parts and technical equipment [5-7].

Maintaining leak-tightness at the interface between two materials, usually with dif-
ferent physical and chemical properties, poses certain challenges due to the interdiscipli-
nary nature of the phenomena that occur in this area. These include thermomechanical
phenomena (such as deformation and thermal expansion), phenomena associated with
the flow of a fluid through a so-called porous bed, as well as aspects related to the struc-
ture and topography of the surface [8-10].

Recently, so-called metal gaskets have gained wide popularity in the sealing technol-
ogy of pipelines and industrial fittings. They are characterised by high mechanical and
thermal strength. Nevertheless, careful workmanship, both of the gasket itself and of the
surface to be sealed, is required to ensure tightness at the metal-to-metal interface [11].

A key parameter affecting the permeability of metal gaskets is surface roughness.
The influence of this parameter on the assessment of permeability and its mathematical
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modelling can be found in many papers. Zhang et al. [12] approached the modelling of
permeability at the interface between two metallic surfaces using fractal theory. The math-
ematical model proposed by the authors reproduces the contact geometry of two metal
surfaces, one rough and deformable and the other perfectly smooth and rigid. The level
of permeability is the result of the gradual interpenetration of the two surfaces under com-
pressive force, causing the pore cross-sectional area of the rough contact to gradually de-
crease. For the mathematical representation of the rough surface, the authors used the
three-dimensional model proposed by Ausloos and Berman [13]. The final part of the
study also modelled the fluid flow through an annular porous bed, replicating the oper-
ating conditions of a typical metal gasket. Experimental verification of the mathematical
model described above is presented in [14]. The authors carried out tests on a test rig, the
main components of which were sets of two circular plates with different contact surface
roughness. The tests consisted of measuring the leakage (i.e., permeability) through the
contact of these surfaces at different values of contact force and pressure of the fluid to be
sealed. The final conclusions show that a very good agreement between the mathematical
model proposed in [12] and the experiment was obtained.

Zheng et al. [15] addressed the effect of temperature on the thermal expansion of the
interface and hence on the permeability of two metallic surfaces. The results of the math-
ematical modelling of the leakage at the interface between two surfaces are also described
in [16], introducing the concept of the so-called flow regime, which distinguishes between
bulk and diffusive flow through a porous bed. An analytical model of fluid flow through
a porous interface using, among others, the Sierpinski fractal model was proposed in [17].
The results of work dealing with the mathematical modelling of the deformability of a
rough surface under pressure and its direct effect on the geometry of a single pore are
presented in [18-20], among others. A method for modelling leakage at the metal-to-metal
interface was also proposed in [21], where the permeability of the sealed fluid was repro-
duced with high accuracy on the basis of an analytical model and numerical calculations
(i.e., simulation of the deformation of two rough surfaces under pressure).

Analysis according to computational fluid dynamics (CFDs) [22] can also be used for
modelling leakage. For example, this analysis was used by Zhang et al. [23] to model the
flow at the interface of two deformable surfaces, taking into account the effect of non-
uniform stress distribution due to external loading. Grine and Bouzid [24] proposed an
analytical modelling of leakage through a porous bed, giving two models of fluid flow
through a single pore, i.e., a capillary model and an annular model. The simulation results
were verified experimentally, achieving very good agreement.

A typically experimental way of assessing permeability at the metal gasket-metal
plate interface is presented in [25], in which quantitative results of leakage (i.e., permea-
bility) induced by varying degrees of loading (compression of the plates) and pressure of
the fluid being sealed are shown. An empirical model for assessing leakage in a flanged
joint with a gasket is proposed in [26].

In contrast to the work shown above, this paper addresses the modelling of leakage
on the unusual metal-to-metal interface geometry of metal plates with sharp-edged gas-
kets. The gasket analysed in this work is characterised by three concentric rings incised
on the outer surfaces, which cause extremely high contact pressures even at low axial
loads on the plates between which the gasket is fitted. Using the mathematical models
proposed in the above-described studies, it is not possible to reproduce the leakage (per-
meability) effect in this case, because these models assume a contact geometry of two par-
allel surfaces which, under the influence of displacement (compression), interpenetrate
each other and reduce the cross-sectional area of the rough surface. In the case of the pro-
posed innovative gasket, one of the surfaces is not parallel but sharply edged, so the in-
tensity of its penetration into the roughness profile of the sealed surface has a dominant
effect on pore closure and thus permeability. This paper uses the well-known fractal de-
scription of a rough surface [13], but in the analytical model of the cooperation between
the two surfaces, the change in pore geometry is described by the gradual immersion of
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the gasket ridge. The proposed model is a semi-empirical formulation, as some of the re-
sults needed for the analytical calculations were imported from numerical calculations.
The model was verified experimentally by carrying out leakage and compression tests of
the gasket under different loading conditions, i.e., the effects of temperature and load. It
is worth adding that the tests and simulations of gasket compression do not fully reflect
the real deformation of the gasket ridges that would occur in a real bolted flange joint.
Considering this effect will be the subject of future research.

2. Materials and Methods
2.1. Object of the Research

The object of this research was a metal gasket of the DeltaV-Seal™ type [27,28]. Its
characteristic feature is that the sealing surface is formed by sharp-edged rings, concen-
trically incised on the faces of the gasket, which form concentric contact surfaces during
compression [29] when the tops of the ridges are flattened. The gasket design in the ana-
lysed variant has three sharp-edged rings located on the inner, middle, and outer diame-
ters, respectively, as shown in Figure 1. The fundamental advantage of such a design over
typical flat gaskets is that the sealing mechanism in this case relies partly on the elastic—
plastic deformation of the ridges and their gradual penetration into the rough surfaces of
the components to be sealed. Such gaskets are mainly used in bolted flange joints of pipe-
lines and fittings [30]. They are characterised by very high tightness and mechanical and
thermal strength.

Cross-section A-A

(a) (b)

Figure 1. Design of a metal gasket of the DeltaV-Seal™ type: (a) front view; (b) cross-section.

In the case of the DeltaV-Seal™, the sealed surface rests in three places across the
width of the gasket, which increases the load-bearing capacity of the joint and, above all,
prevents excessive rotation of the flanges during bolt tightening [31,32]. The material for
the gasket can be 5235 carbon steel, 316L or 304L acid-resistant steel, or S00HT high-tem-
perature steel or other metallic materials. The standard dimensions of this type of gasket
range from 1/2" to 24" or on the EN scale from DN 15 to DN 600 [33]. In this study, gaskets
made of 800HT material and dimensions corresponding to DN40 PN40 [33] designation
were used for testing. The characteristic dimensions of the gasket are shown in Figure 2.
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Figure 2. Characteristic dimensions of the gasket used in the tests.

2.2. Numerical Calculations

The primary objective of the numerical calculations was to determine the actual con-
tact area, mainly of the inner ring (which is the main seal for internal containment), its
deformation (compression ratio), and to identify the reaction force exerted on the top com-
pression plate. The first of these two parameters (contact area of the inner ring and its
deformation) provide the necessary data for analytical calculations of the degree of per-
meability (leakage). The third parameter allows for the leakage or deformation character-
istics to be plotted as a function of the exerted gasket contact stress. The calculations were
carried out in Ansys Workbench 19.0 (Ansys, Inc., Southpointe 2600 Ansys Drive, Cecil
Township, PA 15317, USA) using static thermal analysis in conjunction with structural
analysis [34].

2.2.1. Computational Model

Figure 3a shows an axisymmetric finite element computational model. This model
represents a gasket placed between two parallel surfaces. These surfaces represent a sec-
tion of the plates of the hydraulic press on which the experimental tests, presented later
in this paper, were carried out. PLANE182 finite elements [35] with a second-order shape
function were used to discretise the model. The basic edge dimension of the element was
1 mm. In the areas of expected stress increase (at the edges of the gasket and where it
meets the plates), the design mesh was compacted to an element edge dimension of 0.05
mm (see Figure 3b). This was the optimum value, as a further reduction in the element
dimension only slightly affected the value and stress distribution in the contact area.

@) (b)

Figure 3. Axisymmetric finite element computational model: (a) general view; (b) mesh compaction.

The contact between the edges of the gasket and the press plates was modelled as
frictional, with a friction coefficient of 0.3. Due to the high stiffness of the plates, relative
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to the edges of the gasket, an elastic model was chosen to represent their material proper-
ties. For the gasket material, a bilinear elastic-plastic model was used. The material data
of 800HT were determined during the compression test at room and elevated temperature.
The mechanical properties of both material models are shown in Table 1.

Table 1. Mechanical properties of the materials adopted in the model [36,37].

. o . K,
Part Material T, °C E,MPa v,No Unit E.,, MPa Rpo2, MPa 1/°C x 10-6
20 94,000 0.32 1400 453 15.6
Gasket 800HT 200 85,000 0.34 1192 430 15.9
400 75,000 0.37 962 404 16.3
20 207,000 0.28 N/A N/A 12.8
Inconel®
Plates Allov 625 200 197,000 0.29 N/A N/A 13.1
Y 400 188,000  0.30 N/A N/A 13.6

The numerical model was defined as static, with an active nonlinear material func-
tion. The equilibrium equation was formulated in this case as follows:

K;AU = (K, + K4 + K,)AU = AF (1)

where Kr—tangent stiffness matrix; Ko—small displacement stiffness matrix; K«—large
displacement stiffness matrix; K, —initial stress matrix dependent on the stress level; AU—
generalised displacement vector; and AF—difference between applied force and resistance
force (vector).

The individual stiffness matrices are as follows:

K, =j BIDB, dV, )
Vo
K, = f (BEDBL + BZDBO + B{DBL) dV, (3)
Vo
Vo

where Bo—linear strain—-displacement transformation matrix; B.—linear strain—displace-
ment transformation matrix, which depends on the displacement; Bv—nonlinear strain—
displacement transformation matrix; D—elasticity matrix; and S —Piola-Kirchhoff second
stress tensor.

Equation (1) was solved using the Newton—-Raphson incremental method.

2.2.2. Boundary Conditions

The first loading case for the model was to determine the loads used in the thermal
analysis. For this purpose, the leading edges of the plates were loaded with temperature,
depending on the analysis case. These were assumed to be 20 °C, 200 °C, and 400 °C, re-
spectively. At the outer edges of the gasket and the outer edges of the plates, natural con-
vection conditions were introduced, with a convection coefficient of 5 W/(m2-°C). Thermal
insulation conditions were applied to the remaining edges of the plates. The thermal con-
ditions considered are shown in Figure 4.

The second loading case (used in the structural analysis) was first to transfer the tem-
perature distribution field obtained from the thermal analysis calculations and then to
define the boundary conditions corresponding to the gasket compression simulation. The
displacement condition was applied to the upper edge of the top plate, while the lower
edge of the bottom plate was fixed, taking away all degrees of freedom. The maximum
displacement of the top plate depended on the temperature considered and ranged from
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0.4 mm to 0.5 mm. The given boundary conditions used in the structural analysis are
shown in Figure 5.

y

= Perfectly insulated
Temperature

-~ Natural convection

Figure 4. Thermal boundary conditions of the computational model.

y

m— Fixed support

= Axial displacement

Figure 5. Boundary conditions applied in the structural analysis.

2.2.3. Reading the Results

To determine the force inducing the compression of the gasket, a reaction force meas-
urement resulting from a given displacement was introduced to the top edge of the upper
plate. Relating the reaction force of the top plate to its displacement allowed for the deter-
mination of the force-displacement characteristics and the contact stress characteristics of
the gasket as a function of displacement. In order to determine the precise deformation of
a single sealing ridge, a displacement measurement was applied to each ridge at its base
and top (see Figure 6).

It was also a necessary measurement to determine the actual internal contact area of
the gasket ridge as a function of its displacement. To this end, a measurement of the con-
tact between the surface of the ridge and the surface of the lower plate was introduced
(see Figure 7).
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Measurement of axial deformation
bottom of the internal gasket ridge

Measurement of axial deformation
top of the internal gasket ridge

Figure 6. Measuring paths for outer ridge deformation.

The edges of the ridge coming
into contact with the edge of
the plate

The edge of the plate that
comes into contact with the
edges of the ridge

Figure 7. Measuring paths for the contact between the outer ridge of the gasket and the surface of
the lower plate.

2.3. Analytical Model

The following well-known equation was adopted to model the permeability at the
interface of porous metal surfaces Kv:

ﬂDfl;}nax

T 1287(4—D;)s ©)

v
where Ds—fractal dimension of tortuous capillaries; Amx—maximum pore diameter; T—
tortuosity of the capillaries; and S—cross-section of the flow.

Equation (5) describes the permeability through a porous bed formed by the interface
between two rough surfaces. The flow takes place along dislocated capillaries with a max-
imum pore diameter, which is characterised by the fractal dimension Dy. To determine the
parameters of Equation (5), it is necessary to know the characteristic dimensions of the
roughness profile of the mating surfaces.

Accordingly, the first step in developing the analytical model was to mathematically
represent the roughness profile of the sealed surfaces (in this case, the surfaces of the hy-
draulic press plates). For the mathematical representation of this profile, the Ausloos—Ber-
man model [13] mentioned in the introduction was used in the following form:
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1 M Mmax

s =& () 5 5 oL

m=1n=n1l (6)

— cos —2ny”(xz +y0)z cos (artan (%) — @) + @,

where z—height of the surface profile; L—sample length; G—fractal roughness constant;
D —fractal dimension (in the domain of 2 < D < 3); y—frequency spectrum (usually y =
1.5); ¢, —random number in the range between 0 and 27; n—frequency index of asperi-
ties; M—number of superposed ridges; n—frequency index of asperities; x, y—coordi-
nates (directions) of the surface profile.

As shown in [21] for the representation of face surfaces with concentric structure (i.e.,
those obtained by face turning machining, in which the roughness in the radial direction
significantly exceeds the roughness in the circumferential direction), the Ausloos-Berman
model can be simplified to a two-dimensional form, in which the parameter M =1 is as
follows:

D-2

z(x) =1L <%) (lny)% [(P=3)n {cosqoa — cos [(pa - 27rLyx]} (7)

An example of a roughness profile mapped by Equation (7) is shown in Figure 8.

0.05

0.04

0.03

0.02

0.01

height z(x), mm

0 0.1 0.2 03 04 0.5 0.6 0.7 0.8 09 1

lenght L, mm

Figure 8. Roughness profile modelled by Equation (7) for D =2.125, G =1.87 x 10-%, L = 0.9 mm, and
M=1,y=15.

Equation (7) also makes it possible to model a single, characteristic roughness peak,
i.e., one that appears most frequently along the length of the determined roughness pro-
file. The single peak profile can then be described by a relation in which the length of the
measurement segment L is equal to the length of the single peak base I:

2myx

——]};(o<x<l) ®)

1
z(x) = GP2(Iny)z 1P~ {cosq;a — cos [goa l

An example of a single peak profile is shown in Figure 9.

It should be noted, however, that the term single peak refers to both the top and val-
ley of the roughness profile. The boundary of their separation is the mean line of the pro-
file, as presented in Figure 10.

The subscripts ‘T” and ‘V” used for the parameters shown in Figure 10 denote the top
and valley, respectively, of a single roughness peak. The description of the profile of a sin-
gle peak and valley, among other things, allows for their height, cross-sectional area, and
perimeter to be determined, i.e., the necessary parameters for determining the diameter
of the pore capillary, which is one of the dominant parameters that influence the level of
permeability calculated by Equation (5).
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0.012

0.01

0.008

0.006

0.004

characteristic hight 6, mm

0.002

’ 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
characteristic lenght, mm
Figure 9. Example profile of a single roughness peak determined by Equation (4) for / =0.18 mm, y
=15D=21,and G=1.9 x 103

Top peak

Profile mean line IV |

Valley peak

Figure 10. Basic geometrical parameters of the roughness profile.

When x =1/2 is inserted into Equation (8), the formula for the height of a single rough-
ness peak d is obtained:

!
5=z (E) = 2GP2(Iny)2IGD); 0 < x < | )

On the other hand, integrating Equation (8) gives the formula for the cross-sectional
area of the characteristic peak (top or valley):
!
2mx
A(x) = f GP2(lny)V/?13-D [1 — cos (T)] dx = GP2(Iny) Y2147 P; 0 < x < 1 (10)
0

In turn, the perimeter of a single peak is received by the following operation:

l
P(x) = f\[l + (2GP=2(Ilny)1/21G-D)2dx; 0 < x < I (11)
0

By replacing the actual shape of the surface roughness profile of a face-turned surface
with a model profile in which a single peak of top and valley roughness runs in a regular
manner along the entire length of the roughness profile (Figure 11), its geometry can be
determined using Equations (9)—(11). This geometry is necessary to determine the cross-
sectional area of the pore, i.e., the area that is formed between the adjacent top and valley
profiles.

The basic geometrical parameters describing the shape of a single modelled section
of the roughness profile are shown in Figure 12.
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As shown in [12], the dominant parameter affecting permeability is the cross-sec-
tional area of the pore. This is the cross-sectional area formed between adjacent peaks of
tops and valleys.

Figure 11. Example of replacing the actual roughness profile with a regular model profile.

Perimeter of the pore Pp,,.. Aera of the pore Ap,,.,

ITmax/2 IVmax |Tmax/2

Figure 12. Basic parameters describing the shape of a single modelled section of the roughness pro-
file.

Based on Figure 12, the surface area of a pore of maximum dimension can be calcu-
lated from the following relationship:

APmax = (6Tmax + 6Vmax) ' (leax + leax) - ATmax (12)
= ((bvmax * wmax) — Avmax) = lrmax * Ovmax

where A, Avmx—maximum cross-sectional areas of the top and the valley, respectively,
calculated by Equation (10); I1iax, lvmax—base lengths of the maximum top peak and valley
peak read from the actual roughness profile of the surface to be sealed, respectively; and
OTmax, Ovmax—maximum height of the top peak and valley peak, respectively, calculated us-
ing Equation (9) after half the base width of the top or valley was substituted.

The perimeter of the pore, on the other hand, can be counted from the following re-
lationship:

PPmax = PTmax + PVmax + leax + leax (13)

where Prinax, Pvmax— perimeters of the maximum top peak and valley peak, respectively.

In the case of gradual penetration of the sealing ridge into the pore section, Equations
(12) and (13) reduce to relations (14) and (15), respectively. This is graphically illustrated
in Figure 13.
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a
Apmax(2) = Apmax — z? - tg (E) (14)

a
Pomax(2) = Prmax + Pymax + lrmax + lymax — 272+ tg (5) +2: m (15)

Perimeter of the pore after gradual Aera of the pore after gradual
immersion of the gasket ridge immersion of the gasket ridge
PPmax=f(2) Apma=f(z)

Figure 13. Cross-section of a pore after the sealing ridge was immersed in it.

By knowing the geometry of the pore cross-section, including the sealing ridge that
fills it, the concept of the porosity level of the model section of the roughness profile as a
function of ridge immersion &(z) can be introduced:

APmax(Z)
(6Tmax + 6Vmax) ' (leax + leax)

The diameter of the pore, in turn, can be determined from the analogy of the hydrau-
lic diameter, in which the non-circular cross-sectional area is replaced by an equivalent
circular cross-section, and its diameter is determined from Equation (17). A graphical in-
terpretation of the calculation of the equivalent pore diameter is shown in Figure 14.

4 Apmax(2)
Primax(2)

e(z) = (16)

(17)

}-Pmax (Z) =

Figure 14. Graphical representation of the definition of equivalent pore diameter.

The diameter of the pore and the degree of porosity allow for the determination of
further parameters, which are the fractal dimension of tortuous capillaries Drand the tor-
tuosity of the capillaries t:
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D — In (¢)
foe Amin (18)
in (722)

[ 2 4]

| J( ——) +4l

1] 1 1—e¢-1 |
T=E|1+E\/1—E+\/1—8 1 1 | (19)

| VTR

| |

By analysing Equations (16) and (17), it can be seen that with the degree of compres-
sion, the sealing ridge gradually fills the pore cross-section, leading to a reduction in the
degree of contact porosity and the pore diameter.

The value of the cavity of the sealing ridge is related to its direct deformation, a value
calculated from the numerical calculations presented in Section 2.2.

By calculating the contact permeability, the leakage at the interface with the inner
sealing ridge can be calculated in turn, using Darcy’s equation [38,39], which describes
leakage through a porous bed. In the case of a cylinder-shaped bed, the formula for deter-
mining leakage (by mass related to the average diameter of the cylinder) takes the follow-
ing form:

_ 2mKyhp(po — pe)

o nin (%) “Tay

where Kv—permeability; 1 —height of the porous structure; p—fluid density; po—pressure
inside of the cylinder; pr—pressure outside of the cylinder; n—dynamic viscosity; ro—
outer radius of the cylinder; ri—inner radius of the cylinder; and rav—average radius of
the cylinder.

A graphical interpretation of Equation (20) is shown in Figure 15.

(20)

i
! I ¢
|
: |

Figure 15. Graphical interpretation of a flow model through a porous bed in a cylindrical shape.

It should be noted that the radii ri and ., appearing in Equation (20), denoting the
inner radius (riri(z)) and outer radius (riro(z)) of the sealing ridge, will vary with the degree
of compression of the ridge, as shown in Figure 16. This is due to the contact width of the
sealing ridge increasing with its axial load.

The contact width of the inner sealing ridge as a function of its deformation is calcu-
lated from the following relationship:

Ar(2)
b(z) = —= 21
()= 50— @1
where Ar(z)—contact area of the inner sealing ridge as a function of the deformation z,
obtained from numerical calculations; rirm—mean radius of contact surface of inner seal-

ing ridge.
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Upper plate

iRo(2)

Migi(2)

Figure 16. Graphical interpretation of deformed sealing ring.

The inner radius is calculated from the following formula:

"1ri(2) = Tirm — b(2) (22)
And the outer radius is calculated from the following equation:
T1ro(2) = Tirm + b(2) (23)

where riri(z), 1iro(z) —inner and outer radii of the contact surface of the outer sealing ridge.

2.4. Experimental Research

Experimental research was carried out on the samples that constituted the test subject
described in Section 2.1. The first objective was to determine the characteristics describing
the stiffness of the gaskets at a given temperature, on the basis of which the numerical
model was verified. The second objective was to determine the gasket tightness as a func-
tion of the pressure exerted on the gasket, on the basis of which the analytical model was
verified.

2.4.1. Test Stand

Figure 17 shows the test stand on which the experimental research was carried out.
Its main component is a computer-controlled hydraulic press.

Hydraulic press Leakage detector Steering modul of

Gasket

Lower plate

the hydraulic press

Rejestrator of the
temperature

Rejestrator of the
pressure

Computer

Steering module of /

the leakage detector/

Figure 17. Test stand for measuring the tightness and mechanical properties of gaskets.
The press consists of a stationary lower plate and a sliding upper plate. A displace-

ment sensor system is installed between the plates to record the deformation of the gasket
under test. A force measurement sensor is used in the top plate. Both plates can be heated
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to a maximum temperature of 750 °C. A mass spectrometric helium detector was used to
measure leakage. Helium was fed into the gasket from a cylinder connected by a line to
the lower plate. A pressure gauge was installed in the path of this line to assess the pres-
sure of the sealed medium. All measurement data were recorded in real time and archived
in computer memory.

2.4.2. Procedure for Determining the Compression Characteristics

The test procedure is based on EN 13555 [40,41], which strictly specifies the test plan
for gaskets. It assumes a gradual compression of the gasket to given pressure levels and
its partial unloading. This procedure allows for the plotting of so-called compression char-
acteristics, which express the degree of compression of the gasket (change in thickness) as
a function of the contact pressure exerted on its surface. In this test plan, gaskets were
compressed at 20 °C, 200 °C, and 400 °C and at a maximum contact pressure of 700 MPa.
The average contact pressure exerted on the gasket was calculated based on the force ex-
erted by the hydraulic press relative to the fixed contact area of the gasket (referenced to
the base of the ridges). The total contact area at the base of the three ridges in this case was
357.5 mm?2. The results of the measurements are presented in Section 3.

2.4.3. Procedure for Determining the Leakage Characteristics

This test procedure is also based on EN 13555 [40,41]. In this case, the tested gasket
was compressed to a predetermined pressure level and unloaded. At each predetermined
pressure point, a measurement of the leakage of helium gas sealed inside the gasket was
taken. The pressure at which the leakage was measured equalled 40 bar. Tests were carried
out at 20 °C, 200 °C, and 400 °C. The results of the tests are leakage characteristics, i.e.,
relationships defining the leakage level (related to the average gasket diameter) as a func-
tion of the contact pressure exerted on the gasket surface. The results of the measurements
are presented in Section 3.

2.4.4. Measurement of the Roughness Profile of Sealed Surfaces

The experimental study was complemented by the measurement of the roughness
profile of the compression plates of the hydraulic press. The measurements were made
using the contact method with an SRT-6600 HT profilometer (HUATEC Group Corpora-
tion, 7th Floor, Chengyuan Building B, the Mid. Road of Jiancaicheng Haidian Dist. Bei-
jing, China), for which the length of the measuring section was 4.5 mm and the maximum
measured depth was equal to 20 um. The roughness profile parameters of the sealed sur-
faces defining the maximum ridge (its height and base width) were the basic data for de-
termining the geometric parameters describing the analytical leakage model.

3. Results
3.1. Numerical Calculations

Figure 18 shows the compression characteristics of the gasket. These show the de-
pendence of the contact pressure exerted on the gasket surface as a function of the change
in gasket thickness. As in the experimental studies, the pressure was calculated here as
the reaction force exerted on the top plate, related to the area resulting from the sum of
the areas of the base of the three ridges.

With a maximum displacement of the plate of 0.5 mm, the maximum pressure was
approximately 700 MPa. The important parameter measured in the simulation, from the
point of view of the analytical calculation, was the compression of a single ridge. For the
purposes of the analytical model, the only and sufficient measurement was the plotting of
this parameter for the inner ridge of the gasket. The course of its change at the three tem-
peratures as a function of pressure is shown in Figure 19.

The last of the important parameters needed for further analytical calculations was
the change in the internal contact area of the ridge as a function of its compression to
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determine the actual contact width of the ridge (21). The course of the change in this pa-
rameter is shown in Figure 20.

Gasket thickness, mm

(a)

3.60 350 340
Gasket thickness, mm

(b)

Gasket thickness, mm

(0)

3.20

500

100

MPa

Gasket stress,

Gasket stress, MPa

Figure 18. Compression characteristics of the gasket numerically determined at (a) 20 °C; (b) 200 °C;

() 400 °C.
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Figure 19. Deformation course of the inner sealing ridge under contact pressure at (a) 20 °C; (b) 200
°C; (c) 400 °C.
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Figure 20. Course of the contact surface of the inner sealing ridge as a function of its deformation at
(a) 20 °C; (b) 200 °C; (c) 400 °C.
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As can be seen from the above data, a single ridge deforms from 0.175% to 0.255%
depending on the temperature and the set maximum contact pressure, and the actual con-
tact area varies from about 30 mm? to about 60 mm?2.

3.2. Results of Experimental Measurements
3.2.1. Compression Characteristics

Figure 21 shows the compression characteristics of the gaskets against the character-
istics obtained from the numerical calculations. It can be seen that as the temperature in-
creases, the experimental characteristics approach those determined numerically. The de-
viation of the numerically calculated characteristics from the actual characteristics is most
likely due to errors in the thickness tolerances of the gaskets (individual ridges) resulting
from inaccuracies in the turning treatment. This is evidenced by the fact that, as the com-
pression of the gasket increases, the numerically determined characteristic approaches the
experimental characteristic, which is the result of the gradual adaptation of the sealing
ridges to the compression plates of the hydraulic press.
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400 400
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300 300

200 200

4.00

3.60

Thickness, mm

q
|

|
340 /
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Figure 21. Actual compression characteristics of the gasket against numerically determined charac-
teristics at (a) 20 °C; (b) 200 °C; (c) 400 °C.

3.2.2. Leakage Characteristics

Figure 22 shows the leakage characteristics that were obtained over a range of contact
stress, from 600 MPa to 50 MPa.

The minimum leakage level, irrespective of the test temperature, oscillates between
1 x 107-mg/(m-s). What is noteworthy is the course of the characteristics in the area ap-
proaching the minimum leakage limit. Before this is reached, the leakage—contact pressure
curve is very steep. A small increase in pressure results in a significant increase in leakage,
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even by several orders of magnitude. Once the minimum value is reached, the leakage
already remains almost constant, regardless of the increase in contact pressure. When un-
loading, the leakage—pressure relationship curve (in the pressure range from 600 MPa to
200 MPa) deviates slightly from the load curve. A further decrease in contact stress shifts
the limiting minimum leakage to the side of the lower stress values, which is due to the
formation of hysteresis. This is mainly due to the plastic deformation of both materials
(gasket and press plates). The plastic deformation of the gasket ridges has a particularly
significant influence on this behaviour. The contact width of the ridge increases after com-
pression and deforms permanently. This is particularly true of the contact width of the
inner ring as it determines the gasket. The other two rings act more as secondary gaskets.
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Figure 22. Leakage characteristics determined at (a) 20 °C; (b) 200 °C; (c) 400 °C (The black line
indicates the experimental loading curve and the green line indicates the experimental unloading
curve.)

3.2.3. Roughness Profile

Figure 23 shows the roughness profile of the lower plate, measured in the contact
area with the tested gasket. The dominant pattern of the characteristic peak, which ap-
pears most frequently and varies slightly in shape, can be clearly seen. A maximum peak
can also be distinguished.
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Figure 23. Roughness profile of the lower plate measured in the contact area with the tested gasket.

3.3. Analytical Calculations

Figure 24 shows a section of the roughness profile of the lower plate of the hydraulic
press, together with the characteristic roughness peaks modelled and plotted. The fit of
the peaks was obtained using the method of successive approximations by changing the
value of the fractal dimension Dy. The value of G was assumed to be the same as in [14].
For a comparable roughness parameter, Ra =4.2 um, G=1.9 x 10-5.
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Figure 24. Fragment of the roughness profile of the lower plate of a hydraulic press with the char-
acteristic roughness peaks modelled and plotted.

Using Equations (5)—(20), the basic parameters describing the permeability and mass
leakage of helium through the porous bed formed by the contact between the sealing ridge
surface and the hydraulic press plates were determined. The basic components of the an-
alytical model were the parameters determined (from part of the experimental studies)
describing the profile of the gasket ridge roughness of the sealed plates. Based on these,
the shape of the model fragment of the roughness profile, and its changing cross-sectional
area resulting from the gradual penetration of the sealing ridge, was mathematically re-
flected. Determined on the basis of numerical tests, the degree of depression of the sealing
ridge z allowed for the following to be calculated: the degree of porosity (according to
Equation (16)), the maximum pore diameter (according to Equation (17)), the degree of
capillary dislocation (according to Equation (19)), and the fractal dimension of the capil-
lary (according to Equation (18)). These data were the components used for the
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determination of the permeability described by Equation (5) and its value, in conjunction
with the thermodynamic parameters of the gas (viscosity and density of helium at a given
temperature) and the numerically calculated contact width (determining the inner and
outer radius of the contact surface of the inner sealing ridge), allowing for the calculation
of the mass leakage from Equation (20). The aforementioned parameters are shown in
fragments in Table 2. The graphical progression of the analytical characteristics, as a func-
tion of temperature, on the background of the experimental characteristics, is shown in
Figure 25. Helium parameters as a function of temperature are shown in Table 3.

Table 2. Summary of selected results related to the calculation of permeability and mass leakage at
20 °C.

Apmux(Z), . Dy, T, 2 er AIR(Z)/

mm? g, No Unit Awmax, mm No Unit  No Unit Kv, m meg/(m-s) mm? Z, mm o, MPa
0.000865 0.503 0.003173 1.850 1.455 8.562 x 1016 24,378.6 3.205 0.0007 16.2
0.000864 0.502 0.003166 1.850 1.456  8.476 x 10716 24,2139 3.145 0.0016 20.7
0.000861 0.500 0.003148 1.849 1.459  8.261 x 10-1¢  23,880.5 3.066 0.0029 25.2
0.000855 0.496 0.003122 1.848 1.465 7.945 x 10¢ 23,575.0 3.000 0.0043 28.6
0.000849 0.493 0.003099 1.846 1471 7.674 x 10716 22,883.7 2.967 0.0053 30.9

110° T T T i i T 1-10° T ‘\ T A| | ; L T

ey 1 I 1 T nalytical leakage curve

1108 = Analytical leakage curve ] 110? \ Experimental Ioiding curve

412 \\'\ Exzerfmen;a: Ioaldinj c:rve | 1100 B Experimental unloading curve

oo \ xperimental unioading curve ,é |
E i i\ < 1100 \ \

110 t £
%1»101 \\\ %’, 1.10% | \ \ \
il e 1, SN \
1104 \ \\ 1-10°% \\ S— \
1105 \ \ \| —_——— |
LN 1107 \

110 - \

1107 | 110°% Bl

ra0? 0 100 200 300 400 500 600 700 Gasket stress, MPa

Gasket stress, MPa
(a) (b)
1.10° ] . I
1102 Spanivariai kaclrg s
- Experimental unloading curve
£
“% 110° ‘\ ‘
:22‘ 1-10* \
3 1-10° \
110
1.107 ~ \
e o 100 200 300 400 500 500 700

Gasket stress, MPa
(9

Figure 25. Leakage characteristics obtained from analytical calculations at (a) 20 °C; (b) 200 °C; (c)
400 °C.
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Table 3. Properties of helium as a function of temperature.
Propert Temperature
e
pery 20°C 200 °C 400 °C
Density, kg/m? 0.1634 0.1025 0.0708
Dynamic viscosity, Pas 1.70 x 10-° 2.73 x 10~ 3.48 x 10

From the course of the characteristics shown in Figure 25, it can be seen that the pro-
posed mathematical model represents the real phenomenon well. This is evidenced by
their similarity to the characteristics obtained experimentally (Figure 22).

The hysteresis that developed between the load and unload curves is the result of the
plastic deformation of the inner ridge. This is well illustrated by the graphs in Figure 20,
which show the variation in the internal contact area of the sealing ridge as a function of
its deformation. In addition, the undulation of the model characteristic curve is mainly
due to the stepwise variation in the contact area obtained from the numerical calculations.

What is noteworthy here is the explanation for achieving the minimum leakage
value. Certain constraints had to be introduced into the mathematical model, resulting
from the minimum value of the degree of porosity and the minimum pore diameter. With-
out their introduction, an increase in the cavity of the sealing ridge inside the model pore
would have caused these parameters to gradually move towards 0.

The first constraint was introduced on the basis of the minimum dimension of the
pore Amin that could be inserted into the area of the square whose sides form the distances
between neighbouring atoms of the metallographic lattice. A value of two angstroms was
taken as this dimension, i.e., a value equal to 2 x 107 mm. By plotting the degree of porosity
calculated by Equation (16) as a function of the maximum pore diameter Armx(z), it was
possible to determine the critical porosity at which the maximum pore diameter was Amax
= 100-Amin = 2 x 10° mm (see Figure 26). For the value Amx =2 x 10 mm, the minimum
value of the degree of porosity & =0.00906 was determined by means of the approximation
formula outlined in Figure 26.
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€=158.16:A,,,,+ 0.0059

0.4

Porosity €,
o
w

0.2

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035
Maximum diameter of the pore A, mm

Figure 26. Variation in the degree of porosity as a function of the maximum pore diameter.

Another constraint was the introduction of a value for the fractal dimension, which
also tends towards 0 as the degree of porosity decreases. In the case of the two-dimen-
sional model, the value of this parameter ranges from 2 to 1, i.e., the lower value was set
at 1. It should also be noted that the effect of increased temperature necessitated the intro-
duction of a certain correction, namely the correction of the average pore diameter, which
resulted from thermal expansion. This correction was made using the following equation:
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Amaxr = Amax * AT - a¢ (24)

where Ammr—maximum pore diameter at elevated temperature; AT—temperature in-
crease of more than 20 °C; and ac—coefficient of linear expansion of the hydraulic press
plates material.

It should be noted that the proposed analytic model predictions and the experimental
leakage curves (Figure 25) have not been checked for accuracy and consistency since the
gasket compression test result from only one gasket was considered (Figure 21). Further-
more, the proposed analytical model should be checked in regard to the sensitivity of the
parameters that have an influence on the permeability and the leakage rates. This will be
the topic of future research work.

4. Discussion

The numerical calculations of the gasket, carried out in the first part of this paper,
allowed for the determination of the basic data related to its deformation, i.e., the defor-
mation of the ridges, the measurement of the contact area of the ridges as a function of its
compression, and the determination of the average contact stress related to the base of the
three ridges of the gasket. These results, particularly in relation to the inner ridge of the
gasket, provided the necessary input to the analytical model. It is the inner ridge of the
gasket that is responsible for its tightness as it represents the first leakage restriction
threshold in the fluid flow path through the gasket. From the compression characteristics
obtained from the numerical calculations, shown in Figure 18, the compression level of
the gasket under a pressure of 700 MPa, depending on set temperatures of 20 °C, 200 °C,
and 400 °C, is 11.8%, 16.3%, and 17.4%, respectively. The contact area of the inner ridge at
the maximum compression level was 30 mm? at 20 °C and about 60 mm? at 200 °C and 400
°C. The maximum deformation of the inner ridge was 0.175 mm, 0.21 mm, and 0.25 mm
for 20 °C, 200 °C, and 400 °C, respectively, which represented 34%, 42%, and 50% of the
initial ridge height.

The experimental tests carried out in the second part of this paper allowed for the
determination of the actual compression characteristics. This made it possible to verify the
correctness of the numerical model assumptions. As it turned out, the course of the actual
characteristics against the numerically determined characteristics differed only slightly
from each other. The largest deviations occurred in the initial compression phase of the
gasket. These deviations were probably due to slight differences between the actual di-
mensions of the gasket ridges and the geometric model used in the calculations. The clear-
ances between the test stand components and the measurement accuracy of the force and
displacement sensors probably also had an additional influence.

From the leakage characteristics obtained, it can be observed that the leakage de-
creases very intensively as the contact pressure increases. In the pressure range from 50
MPa to about 200 MPa, the leakage changes by up to four orders of magnitude. At a certain
contact pressure limit, a minimum leakage of approx. 1 x107 mg/(m-s) is reached depend-
ing on the temperature used in the tests. Further increases in contact pressure beyond the
value determining the minimum leakage no longer cause significant changes. During the
unloading phase of the gasket, i.e., the reduction in contact pressure, the minimum leak-
age point shifts towards lower contact pressure values. This is a result of the permanent
deformation of the inner ridge of the gasket, its increased contact area, and its better align-
ment with the surface irregularities of the hydraulic press plates, providing better re-
sistance to the passage of fluid.

As shown by the measurements of the roughness profile of the press plates, its shape
changes in a regular manner, in which the profile’s characteristic peak and maximum peak
can be distinguished. The characteristic peak reaches a height of about 0.0105 mm and a
base length of 0.181 mm, while the height and base width of the maximum peak are 0.013
mm and 0.248 mm, respectively.
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The analytical calculations carried out in the final stage of the paper showed that the
analytical model proposed in the theoretical part very well represents the phenomenon of
fluid flow at the interface between the sealing edges and the sealed surfaces. The model
describing the permeability of the porous bed, adopted from the literature, in conjunction
with Darcy’s model of flow and the geometric model proposed by the authors, which de-
termines the variable (under pressure) geometry of the pore through which the flow oc-
curs, reflects the real phenomenon very well.

This is evidenced by the leakage characteristics plotted from analytical and numerical
calculations as a function of gasket contact stress. Both their course and the characteristic
point at which the transition occurs to reach minimum leakage values are very close to the
actual characteristics determined at a given temperature. The analytical model required
the introduction of certain constraints. These were the application of a minimum degree
of porosity and a limit on the maximum pore diameter. Without these constraints, the
leakage rate would have tended towards 0 with increasing pressure. The limiting value
for the maximum pore diameter was determined from the minimum pore diameter that
would be inserted into the region formed between adjacent atoms of the metal structure.
This value was assumed to be 2 x 107 mm, i.e., 2 angstroms, and the ratio of minimum to
maximum pore diameter was determined from Equation (5). By plotting the relationship
between the analytically calculated degree of porosity and pore diameter, the minimum
value of the degree of porosity was determined.

5. Conclusions

The following conclusions can be drawn from the numerical and analytical calcula-
tions and experimental studies carried out in this paper:

1. The numerical model proposed in this paper, reproducing the geometry of a sharp-
edged gasket located between two parallel plates of a hydraulic press, allows for the
degree of deformation of the gasket to be modelled in a sufficiently accurate manner,
both at room temperature and at an elevated temperature;

2. The gasket presented in this paper is characterised by a very low leakage rate. Its
minimum value is 1 x 107 mg/(s'm) and is achieved at a pressure of approximately
200 MPa;

3. Loading the gasket outside the pressure area determining the minimum leakage
causes the critical leakage value to shift to the side of the lower contact pressure dur-
ing the gasket unloading phase;

4. As the temperature increases during the gasket test, the stress unloading curve be-
comes smoother. This means that an increase in temperature maintains a higher gas-
ket tightness;

5. The level of deformation of the inner ridge of the gasket determines its tightness,
while the other ridges act as secondary barriers;

6. The analytical calculations show that the achievement of minimum leakage is related
to the complete filling of a section of the roughness profile by the sealing ridge of the
model channel, which establishes the limiting minimum pore diameter;

7. The shape of the leakage characteristics, in the unloading phase, is determined by the
level of deformation of the ridge, particularly its contact width resulting from per-
manent plastic deformation;

8. A further perspective for this work is to consider the non-uniform stress distribution
on the gasket ridges that occurs in a real bolted flange joint;

9.  The proposed analytical model should be checked for the sensitivity of the parame-
ters affecting the permeability and leakage rates.
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Nomenclature

Description

Contact area of the inner sealing ridge under deformation

Area of the maximal pore as a function of ridge immersion

Maximum cross-sectional areas of the top peak and the valley peak, respectively
Contact width of the inner sealing ridge

Linear strain—-displacement transformation matrix

Linear strain—-displacement transformation matrix, which depends on the displacement
Nonlinear strain—displacement transformation matrix

Fractal dimension and fractal dimension of tortuous capillaries, respectively
Elasticity matrix

Young modulus, elastic, and tangent in plastic zone, respectively

Fractal roughness constant

Height of the porous structure

Small displacement stiffness matrix

Large displacement stiffness matrix

Tangent stiffness matrix

Permeability

Initial stress matrix dependent on the stress level

Base lengths of the maximum top peak and valley peak, respectively
Sample length

Frequency index of asperities

Number of superposed ridges

Pressure inside and outside of the cylinder, respectively

Perimeter of the pore as a function of ridge immersion

Perimeters of the maximum top peak and valley peak, respectively

Mass flow per perimeter

Radius, inner, outer, and inner of the inner ridge, outer of the inner ridge, mean of the inner

ridge, and average radius of the cylinder, respectively

Yield strength

Cross-section of the flow

Piola—Kirchhoff second stress tensor

Temperature

Coordinates in vertical and horizontal positions, respectively
Opening angle of the sealing ridge

Coefficient of the thermal expansion

Maximum height of the top peak and valley peak, respectively
Difference between applied force and resistance force (vector)
Generalised displacement vector

Porosity level as a function of ridge immersion

Dynamic viscosity

Diameter of the pore, maximum and minimum, respectively
Poisson ratio

Fluid density

no unit
no unit
no unit
no unit
no unit
MPa
no unit
mm

no unit
no unit
no unit
mm?
no unit
mm
mm

no unit
no unit
MPa

1/°C
mm
no unit
no unit
no unit
Pas
mm
no unit

kg/m?
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Y Frequency spectrum no unit
T Tortuosity of the capillaries no unit
Pa Random number no unit
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